1、对称加密算法
对称加密算法是应用较早的加密算法,数据发送方将明文和密钥经加密算法处理,使其变成密文发送出去;接收方收到密文后,使用和加密算法相同的密钥进行逆算法解密,还原出明文。在对称加密算法中,使用的密钥只有一个,收发双方使用相同的密钥对数据进行加密或解密。
双方都必须保管好密钥,任一方的密钥泄露,都会导致加密信息不安全;尤其是双方协商更换密钥过程中,密钥会出现在传输过程中,严重影响数据的安全性。
对称加密算法常用的AES可以参考嵌入式算法6---AES加密/解密算法。
2、非对称加密算法
和对称加密算法最大的区别是,非对称加密算法需要两个密钥,公开密钥(public key 简称公钥)和私有密钥(private key 简称私钥),且公钥与私钥是互相关联的一对。使用公钥对数据进行加密,只有用对应的私钥才能解密,私钥加密签名也只有公钥能解密验签。
非对称加密算法实现机密信息交换的基本过程:
1、甲方生成一对密钥并将公钥公开,私钥保密
2、乙方使用甲方的提供的公钥,对机密信息加密后再发送给甲方;甲方使用自己私钥对加密后的信息进行解密
3、甲方也可以使用自己的私钥对机密信息进行签名后再发送给乙方,乙方用甲方的提供公钥对甲方发来的密文进行验签
非对称加密算法的特点:
1、公钥公开,私钥私藏,无需双方传输密钥协商,所以安全性比对称加密算法更高
2、非对称加密的算法复杂,运算速度比对称加密解密的速度慢很多
3、一般情况下使用非对称加密保护对称加密的密钥,密钥协商后使用对称加密进行通信
4、最佳实现是双方各自保存自己的私钥,使用对方的公钥加密数据传输
3、RSA算法与密钥
非对称加密算法中最常用的当属 RSA ,其算法本身基于一个简单的数论知识,给出两个素数,很容易将它们相乘,然而给出它们的乘积,想得到这两个素数就显得尤为困难。具体的私钥与公钥生成原理和加密、解密过程,不是本文关注的重点。
私钥和公钥的生成,可以借助mbedtls源码或openSSL工具生成,举例如下:
1、安装openSSL,下载地址
https://www.openssl.org/
2、安装后进入openSSL命令行界面,使用命令生成RSA2048的私钥,存入private.key文件
OpenSSL>genrsa -out private.key 2048
3、基于公钥生成私钥,存入文件public.key
OpenSSL> rsa -in private.key -pubout -out public.key
4、有些算法库采用传入指数、模数方式进行加解密,而前面生成的公私钥是PEM格式,需要变成Exponent、Modulus形式,就可以使用以下工具在线转换。
https://www.oren.net.cn/rsa/info.html
5、关于mbedtls应用,可以参考mbedtls 基础及其应用,该开源库适合嵌入式系统,且囊括了常用的各种算法。
4、源码
以下是RSA2048的C源码和验证范例,基于Qt测试,也可以结合硬件性能改为RSA1024,移植时注意适配形如 portable_***的三个API。
/************************************/ //关注微信公众号 嵌入式系统 /************************************/ //rsa.h #include "stdlib.h" #define RSA_ENCODE_LEN (2048/8) //RSA2048即256字节,可以视硬件情况改为1024 typedef unsigned char uint8_t; typedef unsigned short int uint16_t; typedef unsigned int uint32_t; #define BI_MAXLEN 130 #define DEC 10 #define HEX 16 #define CARRYOVER 0x10000 #define CARRYLAST 0xFFFF typedef struct { uint32_t m_nLength; //大数在0x1 00 00 00 00进制下的长度 uint16_t m_ulValue[BI_MAXLEN]; //用数组记录大数在0x100000000进制下每一位的值 } CBigInt; //rsa.c #include "rsa.h" #include "time.h" /******************* 适配API *******************/ #define portable_malloc malloc #define portable_free free //随机数种子源 uint32_t portable_rand_seed(void) { time_t timestamp; time(×tamp); return timestamp; } /******************* 适配API *******************/ /***************************************************************** 基本操作与运算 Init, 构造大数对象并初始化为零 Mov,赋值运算,可赋值为大数或普通整数,可重载为运算符“=” Cmp,比较运算,可重载为运算符“==”、“!=”、“>=”、“<=”等 Add,加,求大数与大数或大数与普通整数的和,可重载为运算符“+” Sub,减,求大数与大数或大数与普通整数的差,可重载为运算符“-” Mul,乘,求大数与大数或大数与普通整数的积,可重载为运算符“*” Div,除,求大数与大数或大数与普通整数的商,可重载为运算符“/” Mod,模,求大数与大数或大数与普通整数的模,可重载为运算符“%” *****************************************************************/ static CBigInt *Mov_Big_Long(CBigInt *X, uint32_t A); static CBigInt *Mov_Big_Big(CBigInt *X, CBigInt *A); static CBigInt *Add_Big_Big(CBigInt *X, CBigInt *A); static CBigInt *Sub_Big_Big(CBigInt *X, CBigInt *A); static CBigInt *Mul_Big_Big(CBigInt *X, CBigInt *A); static CBigInt *Div_Big_Big(CBigInt *X, CBigInt *A); static CBigInt *Mod_Big_Big(CBigInt *X, CBigInt *A); static CBigInt *Add_Big_Long(CBigInt *X, uint32_t A); static CBigInt *Sub_Big_Long(CBigInt *X, uint32_t A); static CBigInt *Mul_Big_Long(CBigInt *X, uint32_t A); static CBigInt *Div_Big_Long(CBigInt *X, uint32_t A); static uint32_t Mod_Big_Long(CBigInt *N, uint32_t A); static int Cmp(CBigInt *N, CBigInt *A); /***************************************************************** 输入输出 Get,从字符串按10进制或16进制格式输入到大数 Put,将大数按10进制或16进制格式输出到字符串 *****************************************************************/ static CBigInt *Get(CBigInt *N, char *str, uint32_t system); static char *Put(CBigInt *N, uint32_t system); /***************************************************************** RSA相关运算 Rab,拉宾米勒算法进行素数测试 Euc,欧几里德算法求解同余方程 RsaTrans,反复平方算法进行幂模运算 GetPrime,产生指定长度的随机大素数 *****************************************************************/ static int Rab(CBigInt *N); static CBigInt *Euc(CBigInt *X, CBigInt *A); static CBigInt *RsaTrans(CBigInt *X, CBigInt *A, CBigInt *B); static CBigInt *GetPrime(CBigInt *X, int bits); /***************************************************************** 大数运算库源文件:BigInt.c 说明:适用于C,linux系统 1024位RSA运算 *****************************************************************/ //小素数表 const static int PrimeTable[550] = { 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001 }; /**************************************************************************************** 大数比较 调用方式:Cmp(N,A) 返回值:若N<A返回-1;若N=A返回0;若N>A返回1 ****************************************************************************************/ static int Cmp(CBigInt *N, CBigInt *A) { int i; if(N->m_nLength > A->m_nLength) { return 1; } if(N->m_nLength < A->m_nLength) { return -1; } for(i = N->m_nLength - 1; i >= 0; i--) { if(N->m_ulValue[i] > A->m_ulValue[i]) { return 1; } if(N->m_ulValue[i] < A->m_ulValue[i]) { return -1; } } return 0; } /**************************************************************************************** 大数赋值 调用方式:__Mov_Big_Big(A) 返回值:N,被赋值为A ****************************************************************************************/ static CBigInt *Mov_Big_Big(CBigInt *X, CBigInt *A) { memcpy(X, A, sizeof(CBigInt)); return X; } static CBigInt *Mov_Big_Long(CBigInt *N, uint32_t A) { int i; if(A > CARRYLAST) { N->m_nLength = 2; N->m_ulValue[1] = (uint16_t)(A >> 16); N->m_ulValue[0] = (uint16_t)A; } else { N->m_nLength = 1; N->m_ulValue[0] = (uint16_t)A; } memset((unsigned char*)&N->m_ulValue[N->m_nLength], 0, sizeof(uint16_t) * (BI_MAXLEN - N->m_nLength)); return N; } /**************************************************************************************** 大数相加 调用形式:Add_Big_Big(X,A) 返回值:X=X+A ****************************************************************************************/ static CBigInt *Add_Big_Big(CBigInt *X, CBigInt *A) { uint32_t i; uint16_t carry = 0; uint32_t sum = 0; if(X->m_nLength < A->m_nLength) { X->m_nLength = A->m_nLength; } for(i = 0; i < X->m_nLength; i++) { sum = A->m_ulValue[i]; sum = sum + X->m_ulValue[i] + carry; X->m_ulValue[i] = (uint16_t)sum; carry = (uint16_t)(sum >> 16); } X->m_ulValue[X->m_nLength] = carry; X->m_nLength += carry; return X; } static CBigInt *Add_Big_Long(CBigInt *X, uint32_t A) { uint32_t sum; sum = X->m_ulValue[0]; sum += A; X->m_ulValue[0] = (uint16_t)sum; if(sum > CARRYLAST) { uint32_t i = 1; while(X->m_ulValue[i] == CARRYLAST) { X->m_ulValue[i] = 0; i++; } X->m_ulValue[i]++; if(X->m_nLength == i) { X->m_nLength++; } } return X; } /**************************************************************************************** 大数相减 调用形式:Sub_Big_Big(X,A) 返回值:X=X-A ****************************************************************************************/ static CBigInt *Sub_Big_Big(CBigInt *X, CBigInt *A) { if(Cmp(X, A) <= 0) { memset(X, 0, sizeof(CBigInt)); return X; } else { uint16_t carry = 0; uint32_t num; uint32_t i; for(i = 0; i < X->m_nLength; i++) { if((X->m_ulValue[i] > A->m_ulValue[i]) || ((X->m_ulValue[i] == A->m_ulValue[i]) && (carry == 0))) { X->m_ulValue[i] = X->m_ulValue[i] - carry - A->m_ulValue[i]; carry = 0; } else { num = CARRYOVER + X->m_ulValue[i]; X->m_ulValue[i] = (uint32_t)(num - carry - A->m_ulValue[i]); carry = 1; } } while(X->m_ulValue[X->m_nLength - 1] == 0) { X->m_nLength--; } return X; } } static CBigInt *Sub_Big_Long(CBigInt *X, uint32_t A) { if(X->m_ulValue[0] >= A) { X->m_ulValue[0] -= A; return X; } if(X->m_nLength == 1) { memset(X, 0, sizeof(CBigInt)); return X; } else { uint32_t num = CARRYOVER + X->m_ulValue[0]; int i = 1; X->m_ulValue[0] = (uint16_t)(num - A); while(X->m_ulValue[i] == 0) { X->m_ulValue[i] = CARRYLAST; i++; } X->m_ulValue[i]--; if(X->m_ulValue[i] == 0) { X->m_nLength--; } return X; } } /**************************************************************************************** 大数相乘 调用形式:Mul_Big_Big(N,A) 返回值:X=N*A A a 0 N c d 0 d*0 1 c*0 d*a 2 c*a ****************************************************************************************/ static CBigInt *Mul_Big_Big(CBigInt *X, CBigInt *A) { if(A->m_nLength == 1) { return Mul_Big_Long(X, A->m_ulValue[0]); } else { uint32_t sum, mul = 0, carry = 0; uint32_t i, j; CBigInt N = {0}; memcpy(&N, X, sizeof(CBigInt)); memset(X, 0, sizeof(CBigInt)); X->m_nLength = N.m_nLength + A->m_nLength - 1; for(i = 0; i < X->m_nLength; i++) { sum = carry; carry = 0; for(j = 0; j < A->m_nLength; j++) { if(((i - j) >= 0) && ((i - j) < N.m_nLength)) { mul = N.m_ulValue[i - j]; mul *= A->m_ulValue[j]; carry += mul >> 16; mul = mul & CARRYLAST; sum += mul; } } carry += sum >> 16; X->m_ulValue[i] = (uint16_t)sum; } if(carry) { X->m_nLength++; X->m_ulValue[X->m_nLength - 1] = (uint16_t)carry; } return X; } } static CBigInt *Mul_Big_Long(CBigInt *X, uint32_t A) { uint32_t mul; uint32_t carry = 0; uint32_t i; for(i = 0; i < X->m_nLength; i++) { mul = X->m_ulValue[i]; mul = mul * A + carry; X->m_ulValue[i] = (uint16_t)mul; carry = (uint16_t)(mul >> 16); } if(carry) { X->m_nLength++; X->m_ulValue[X->m_nLength - 1] = carry; } return X; } /**************************************************************************************** 大数相除 调用形式:Div_Big_Big(N,A) 返回值:X=N/A ****************************************************************************************/ static CBigInt *Div_Big_Big(CBigInt *X, CBigInt *A) { CBigInt Y = {0}, Z = {0}, T; if(A->m_nLength == 1) { return Div_Big_Long(X, A->m_ulValue[0]); } else { uint32_t i, len; uint32_t num, div; memcpy(&Y, X, sizeof(CBigInt)); while(Cmp(&Y, A) >= 0) { div = Y.m_ulValue[Y.m_nLength - 1]; num = A->m_ulValue[A->m_nLength - 1]; len = Y.m_nLength - A->m_nLength; if((div == num) && (len == 0)) { Add_Big_Long(X, 1); break; } if((div <= num) && len) { len--; div = (div << 16) + Y.m_ulValue[Y.m_nLength - 2]; } div = div / (num + 1); Mov_Big_Long(&Z, div); if(len) { Z.m_nLength += len; for(i = Z.m_nLength - 1; i >= len; i--) { Z.m_ulValue[i] = Z.m_ulValue[i - len]; } for(i = 0; i < len; i++) { Z.m_ulValue[i] = 0; } } Add_Big_Big(X, &Z); memcpy(&T, A, sizeof(CBigInt)); Mul_Big_Big(&T, &Z); Sub_Big_Big(&Y, &T); } return X; } } static CBigInt *Div_Big_Long(CBigInt *X, uint32_t A) { if(X->m_nLength == 1) { X->m_ulValue[0] = X->m_ulValue[0] / A; return X; } else { uint32_t div, mul; uint32_t carry = 0; int i; for(i = X->m_nLength - 1; i >= 0; i--) { div = carry; div = (div << 16) + X->m_ulValue[i]; X->m_ulValue[i] = (uint16_t)(div / A); mul = (div / A) * A; carry = (uint16_t)(div - mul); } if(X->m_ulValue[X->m_nLength - 1] == 0) { X->m_nLength--; } return X; } } /**************************************************************************************** 大数求模 调用形式:Mod_Big_Big(N,A) 返回值:X=N%A ****************************************************************************************/ static CBigInt *Mod_Big_Big(CBigInt *X, CBigInt *A) { CBigInt Y = {0}, Z; uint32_t div, num; uint32_t carry = 0; uint32_t i, len; while(Cmp(X, A) >= 0) { div = X->m_ulValue[X->m_nLength - 1]; num = A->m_ulValue[A->m_nLength - 1]; len = X->m_nLength - A->m_nLength; if((div == num) && (len == 0)) { Sub_Big_Big(X, A); break; } if((div <= num) && len) { len--; div = (div << 16) + X->m_ulValue[X->m_nLength - 2]; } div = div / (num + 1); Mov_Big_Long(&Y, div); memcpy(&Z, A, sizeof(CBigInt)); Mul_Big_Big(&Z, &Y); memcpy(&Y, &Z, sizeof(CBigInt)); if(len) { Y.m_nLength += len; for(i = Y.m_nLength - 1; i >= len; i--) { Y.m_ulValue[i] = Y.m_ulValue[i - len]; } for(i = 0; i < len; i++) { Y.m_ulValue[i] = 0; } } Sub_Big_Big(X, &Y); } return X; } static uint32_t Mod_Big_Long(CBigInt *N, uint32_t A) { if(N->m_nLength == 1) { return(N->m_ulValue[0] % A); } else { uint32_t div; uint32_t carry = 0; int i; for(i = N->m_nLength - 1; i >= 0; i--) { div = N->m_ulValue[i]; div += carry * CARRYOVER; carry = (uint16_t)(div % A); } return carry; } } /**************************************************************************************** 从字符串按10进制或16进制格式输入到大数 调用格式:Get(N,str,sys) 返回值:N被赋值为相应大数 sys暂时只能为10或16 ****************************************************************************************/ static CBigInt *Get(CBigInt *N, char *s, uint32_t system) { int i; int len = strlen(s), k; memset(N, 0, sizeof(CBigInt)); N->m_nLength = 1; for(i = 0; i < len; i++) { Mul_Big_Long(N, system); if((s[i] >= '0') && (s[i] <= '9')) { k = s[i] - 48; } else if((s[i] >= 'A') && (s[i] <= 'F')) { k = s[i] - 55; } else if((s[i] >= 'a') && (s[i] <= 'f')) { k = s[i] - 87; } else { k = 0; } Add_Big_Long(N, k); } return N; } static CBigInt *GetHex(CBigInt *N, unsigned char *s, unsigned short len, uint32_t system) { int i, j; unsigned char *p = (unsigned char*)N->m_ulValue; memset(N, 0, sizeof(CBigInt)); N->m_nLength = 1; for(i = len - 1, j = 0; i >= 0; i--, j++) { p[j] = s[i]; } i = len % 2; if(i > 0) { N->m_nLength = len / 2 + 1; } else { N->m_nLength = len / 2; } return N; } /**************************************************************************************** 将大数按10进制或16进制格式输出为字符串 调用格式:Put(N,str,sys) 返回值:无,参数str被赋值为N的sys进制字符串 sys暂时只能为10或16 ****************************************************************************************/ static char *Put(CBigInt *N, uint32_t system) { char t[17] = "0123456789ABCDEF"; int i, a; static char s[2048]; if((N->m_nLength == 1) && (N->m_ulValue[0] == 0)) { return NULL; } else { CBigInt X = {0}; memcpy(&X, N, sizeof(CBigInt)); memset(s, 0, 2048); for(i = 2046; X.m_ulValue[X.m_nLength - 1] > 0 && i > 0; i--) { a = Mod_Big_Long(&X, system); s[i] = t[a]; Div_Big_Long(&X, system); } if(i % 2 == 0) { return &s[i + 1]; } else { s[i] = '0'; return &s[i]; } } } static void PutHex(CBigInt *N, uint8_t *out, uint16_t *len) { int i, j, size; if((N->m_nLength == 1) && (N->m_ulValue[0] == 0)) { return; } size = N->m_nLength * sizeof(N->m_ulValue[0]); for(i = size - 1, j = 0; i >= 0; i--, j++) { out[j] = ((uint8_t*)N->m_ulValue)[i]; } *len = size; } /**************************************************************************************** 求不定方程ax-by=1的最小整数解 调用方式:Euc(N,A) 返回值:X,满足:NX mod A=1 ****************************************************************************************/ static CBigInt *Euc(CBigInt *X, CBigInt *A) { CBigInt M = {0}, E = {0}, N = {0}, Y = {0}, I = {0}, J = {0}; int x, y; memcpy(&E, X, sizeof(CBigInt)); memcpy(&M, A, sizeof(CBigInt)); Mov_Big_Long(X, 0); Mov_Big_Long(&Y, 1); x = y = 1; while((E.m_nLength != 1) || (E.m_ulValue[0] != 0)) { memcpy(&I, &M, sizeof(CBigInt)); Div_Big_Big(&I, &E); memcpy(&J, &M, sizeof(CBigInt)); Mod_Big_Big(&J, &E); memcpy(&M, &E, sizeof(CBigInt)); memcpy(&E, &J, sizeof(CBigInt)); memcpy(&J, &Y, sizeof(CBigInt)); Mul_Big_Big(&Y, &I); if(x == y) { if(Cmp(X, &Y) >= 0) { Sub_Big_Big(&Y, X); } else { Sub_Big_Big(&Y, X); y = 0; } } else { Add_Big_Big(&Y, X); x = 1 - x; y = 1 - y; } memcpy(X, &J, sizeof(CBigInt)); } if(x == 0) { Sub_Big_Big(X, A); } return X; } /**************************************************************************************** 求乘方的模 调用方式:RsaTrans(N,A,B) 返回值:X=N^A MOD B ****************************************************************************************/ static CBigInt *RsaTrans(CBigInt *X, CBigInt *A, CBigInt *B) { CBigInt N = {0}, Y = {0}, Z; int i, j, k; uint32_t n; uint32_t num; k = A->m_nLength * 16 - 16; num = A->m_ulValue[A->m_nLength - 1]; while(num) { num = num >> 1; k++; } memcpy(&N, X, sizeof(CBigInt)); for(i = k - 2; i >= 0; i--) { memcpy(&Y, X, sizeof(CBigInt)); Mul_Big_Long(&Y, X->m_ulValue[X->m_nLength - 1]); Mod_Big_Big(&Y, B); for(n = 1; n < X->m_nLength; n++) { for(j = Y.m_nLength; j > 0; j--) { Y.m_ulValue[j] = Y.m_ulValue[j - 1]; } Y.m_ulValue[0] = 0; Y.m_nLength++; memcpy(&Z, X, sizeof(CBigInt)); Mul_Big_Long(&Z, X->m_ulValue[X->m_nLength - n - 1]); Add_Big_Big(&Y, &Z); Mod_Big_Big(&Y, B); } memcpy(X, &Y, sizeof(CBigInt)); if((A->m_ulValue[i >> 4] >> (i & 15)) & 1) { memcpy(&Y, &N, sizeof(CBigInt)); Mul_Big_Long(&Y, X->m_ulValue[X->m_nLength - 1]); Mod_Big_Big(&Y, B); for(n = 1; n < X->m_nLength; n++) { for(j = Y.m_nLength; j > 0; j--) { Y.m_ulValue[j] = Y.m_ulValue[j - 1]; } Y.m_ulValue[0] = 0; Y.m_nLength++; memcpy(&Z, &N, sizeof(CBigInt)); Mul_Big_Long(&Z, X->m_ulValue[X->m_nLength - n - 1]); Add_Big_Big(&Y, &Z); Mod_Big_Big(&Y, B); } memcpy(X, &Y, sizeof(CBigInt)); } } return X; } /**************************************************************************************** 拉宾米勒算法测试素数 调用方式:Rab(N) 返回值:若N为素数,返回1,否则返回0 ****************************************************************************************/ static int Rab(CBigInt *N) { CBigInt S = {0}, A = {0}, I = {0}, K = {0}; uint32_t i, j, pass; for(i = 0; i < 550; i++) { if(Mod_Big_Long(N, PrimeTable[i]) == 0) { return 0; } } memcpy(&K, N, sizeof(CBigInt)); K.m_ulValue[0]--; for(i = 0; i < 5; i++) { pass = 0; Mov_Big_Long(&A, rand()*rand()); memcpy(&S, &K, sizeof(CBigInt)); while((S.m_ulValue[0] & 1) == 0) { for(j = 0; j < S.m_nLength; j++) { S.m_ulValue[j] = S.m_ulValue[j] >> 1; if(S.m_ulValue[j + 1] & 1) { S.m_ulValue[j] = S.m_ulValue[j] | 0x8000; } } if(S.m_ulValue[S.m_nLength - 1] == 0) { S.m_nLength--; } memcpy(&I, &A, sizeof(CBigInt)); RsaTrans(&I, &S, N); if(Cmp(&I, &K) == 0) { pass = 1; break; } } if((I.m_nLength == 1) && (I.m_ulValue[0] == 1)) { pass = 1; } if(pass == 0) { return 0; } } return 1; } /**************************************************************************************** 产生随机素数 调用方法:GetPrime(N,bits) 返回值:N,被赋值为一个bits位(0x100000000进制长度)的素数 ****************************************************************************************/ static CBigInt *GetPrime(CBigInt *N, int bits) { uint32_t i; CBigInt S = {0}, A = {0}, I = {0}, K = {0}; memset(N, 0, sizeof(CBigInt)); N->m_nLength = bits; begin: srand(portable_rand_seed()); for(i = 0; i < N->m_nLength; i++) { N->m_ulValue[i] = rand() * 0x100 + rand(); } N->m_ulValue[0] = N->m_ulValue[0] | 1; for(i = N->m_nLength - 1; i > 0; i--) { N->m_ulValue[i] = N->m_ulValue[i] << 1; if(N->m_ulValue[i - 1] & 0x8000) { N->m_ulValue[i]++; } } N->m_ulValue[0] = N->m_ulValue[0] << 1; N->m_ulValue[0]++; for(i = 0; i < 550; i++) { if(Mod_Big_Long(N, PrimeTable[i]) == 0) { goto begin; } } memcpy(&K, N, sizeof(CBigInt)); K.m_ulValue[0]--; for(i = 0; i < 5; i++) { Mov_Big_Long(&A, rand()*rand()); memcpy(&S, &K, sizeof(CBigInt)); Div_Big_Long(&S, 2); memcpy(&I, &A, sizeof(CBigInt)); RsaTrans(&I, &S, N); if(((I.m_nLength != 1) || (I.m_ulValue[0] != 1)) && (Cmp(&I, &K) != 0)) { goto begin; } } return N; } /***********************************************************************/ static void entropy_poll(unsigned char *output, unsigned int len) { if(len > 0) { int i; srand(portable_rand_seed); for(i = 0; i < len; i++) { output[i] = rand() % 0xff + 1; } } } static char *del_PKCS1Padding(char *src) { int len = strlen(src); if(len % 2 == 1) { src++; } while(*src != 0 && *(src + 1) != 0) { if(*src == '0' && *(src + 1) == '0') { src += 2; break; } src += 2; } return src; } static int add_PKCS1Padding(unsigned char *src, unsigned int len, unsigned char *out) { if(len > RSA_ENCODE_LEN - 11) { return -1; } else { /*要加密的msg*/ memcpy(&out[RSA_ENCODE_LEN - len], src, len); out[0] = 0; out[1] = 2; /*至少8字节的随机数*/ entropy_poll(&out[2], RSA_ENCODE_LEN - 3 - len); out[RSA_ENCODE_LEN - len - 1] = 0; return 0; } } static int PKCS1PKCS1PaddingHexRemove(unsigned char *input, unsigned short *len, unsigned char *output) { if(input[0] == 0 && (input[1] == 1 || input[1] == 2)) { int i; for(i = 2; i < *len; i++) { if(input[i] == 0) { *len -= (i + 1); memcpy(output, &input[i + 1], *len); return *len; } } } return -1; } int RSA2048_pri_PKCS1Padding_Encode(unsigned char *data, unsigned short len, unsigned char *out, char *publicKey, char *ModulusHex) { unsigned char buf[RSA_ENCODE_LEN]; CBigInt N, E; CBigInt mw, mi, jm; uint16_t outlen = RSA_ENCODE_LEN; //Get(&N, Modulus, 16);//string GetHex(&N, ModulusHex, RSA_ENCODE_LEN, 16);//hex array Get(&E, publicKey, 16); add_PKCS1Padding(data, len, buf); GetHex(&mw, buf, RSA_ENCODE_LEN, 16); RsaTrans(&mw, &E, &N); PutHex(&mw, out, &outlen); return outlen; } int RSA2048_pub_PKCS1Padding_Encode(unsigned char *data, unsigned short len, unsigned char *out, char *publicKey, unsigned char *ModulusHex) { unsigned char buf[RSA_ENCODE_LEN]; CBigInt N, E; CBigInt mw, mi, jm; uint16_t outlen = RSA_ENCODE_LEN; GetHex(&N, ModulusHex, RSA_ENCODE_LEN, 16);//hex array Get(&E, publicKey, 16); add_PKCS1Padding(data, len, buf); GetHex(&mw, buf, RSA_ENCODE_LEN, 16); RsaTrans(&mw, &E, &N); PutHex(&mw, out, &outlen); return outlen; } int RSA2048_pri_PKCS1Padding_Decode(unsigned char *data, unsigned short *len, unsigned char *out, char *privateKey, char *ModulusHex) { unsigned char buf[RSA_ENCODE_LEN]; CBigInt N, D; CBigInt mw, jm; //Get(&N, Modulus, 16);//string GetHex(&N, ModulusHex, RSA_ENCODE_LEN, 16);//hex array Get(&D, privateKey, 16); GetHex(&mw, data, *len, 16); RsaTrans(&mw, &D, &N); PutHex(&mw, buf, len); PKCS1PKCS1PaddingHexRemove(buf, len, out); return 0; } int RSA2048_pub_PKCS1Padding_Decode(unsigned char *data, unsigned short *len, unsigned char *out, char *privateKey, unsigned char *ModulusHex) { unsigned char buf[RSA_ENCODE_LEN]; CBigInt N, D; CBigInt mw, jm; int t_len = 0; GetHex(&N, ModulusHex, RSA_ENCODE_LEN, 16); Get(&D, privateKey, 16); GetHex(&mw, data, *len, 16); RsaTrans(&mw, &D, &N); PutHex(&mw, buf, len); t_len = PKCS1PKCS1PaddingHexRemove(buf, len, out); return t_len; } //test static const unsigned char base64_table[65] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; //需要释放内存 unsigned char * base64_encode(const unsigned char *src, size_t len, size_t *out_len) { unsigned char *out, *pos; const unsigned char *end, *in; size_t olen; int line_len; olen = len * 4 / 3 + 4; /* 3-byte blocks to 4-byte */ olen += olen / 72; /* line feeds */ olen++; /* nul termination */ if(olen < len) { return NULL; /* integer overflow */ } out = portable_malloc(olen); if(out == NULL) { return NULL; } end = src + len; in = src; pos = out; line_len = 0; while(end - in >= 3) { *pos++ = base64_table[in[0] >> 2]; *pos++ = base64_table[((in[0] & 0x03) << 4) | (in[1] >> 4)]; *pos++ = base64_table[((in[1] & 0x0f) << 2) | (in[2] >> 6)]; *pos++ = base64_table[in[2] & 0x3f]; in += 3; line_len += 4; if(line_len >= 72) { *pos++ = '\n'; line_len = 0; } } if(end - in) { *pos++ = base64_table[in[0] >> 2]; if(end - in == 1) { *pos++ = base64_table[(in[0] & 0x03) << 4]; *pos++ = '='; } else { *pos++ = base64_table[((in[0] & 0x03) << 4) | (in[1] >> 4)]; *pos++ = base64_table[(in[1] & 0x0f) << 2]; } *pos++ = '='; line_len += 4; } if(line_len) { *pos++ = '\n'; } *pos = '\0'; if(out_len) { *out_len = pos - out; } return out; } //需要释放内存 unsigned char * base64_decode(const unsigned char *src, size_t len, size_t *out_len) { unsigned char dtable[256], *out, *pos, block[4], tmp; size_t i, count, olen; int pad = 0; memset(dtable, 0x80, 256); for(i = 0; i < sizeof(base64_table) - 1; i++) { dtable[base64_table[i]] = (unsigned char) i; } dtable['='] = 0; count = 0; for(i = 0; i < len; i++) { if(dtable[src[i]] != 0x80) { count++; } } if(count == 0 || count % 4) { return NULL; } olen = count / 4 * 3; pos = out = portable_malloc(olen); if(out == NULL) { return NULL; } count = 0; for(i = 0; i < len; i++) { tmp = dtable[src[i]]; if(tmp == 0x80) { continue; } if(src[i] == '=') { pad++; } block[count] = tmp; count++; if(count == 4) { *pos++ = (block[0] << 2) | (block[1] >> 4); *pos++ = (block[1] << 4) | (block[2] >> 2); *pos++ = (block[2] << 6) | block[3]; count = 0; if(pad) { if(pad == 1) { pos--; } else if(pad == 2) { pos -= 2; } else { /* Invalid padding */ portable_free(out); return NULL; } break; } } } *out_len = pos - out; return out; } int main(int argc, char *argv[]) { //原始公钥-私钥 /* -----BEGIN PUBLIC KEY----- MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAwmejRhw/SB2xB3rgJYhg OWBDX/DponDVVPzTWhn3J4INv6jUa9HDkeHhys4OOZTNajr8kRy4TIemotnIYONJ noW7VyIQEAkEyxcMett5mqRPBLuyc8Fygn4ho/rd9JId4+PgKLmr6NVcuZCpVXPe gyqNx0nR/UojISbq/Bu+NlcStmicZUuAeVbkGGUOlvtMzFehkBPwE31EdpYUq+/z LuJ8OaxC+zm5PFo2AZJfI5Gz5lgb1g5ud0TG1JUrm9Dl5/JSNSL3SXBEC77mdfd0 BA5VFl8lV7IfTfSTUE9IKoMevqZxoaGpyN+ZcBby5NgsoqJJ6vmcJRFjI92UrFHV 1wIDAQAB -----END PUBLIC KEY----- -----BEGIN PRIVATE KEY----- MIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQDCZ6NGHD9IHbEH euAliGA5YENf8OmicNVU/NNaGfcngg2/qNRr0cOR4eHKzg45lM1qOvyRHLhMh6ai 2chg40mehbtXIhAQCQTLFwx623mapE8Eu7JzwXKCfiGj+t30kh3j4+Aouavo1Vy5 kKlVc96DKo3HSdH9SiMhJur8G742VxK2aJxlS4B5VuQYZQ6W+0zMV6GQE/ATfUR2 lhSr7/Mu4nw5rEL7Obk8WjYBkl8jkbPmWBvWDm53RMbUlSub0OXn8lI1IvdJcEQL vuZ193QEDlUWXyVXsh9N9JNQT0gqgx6+pnGhoanI35lwFvLk2Cyioknq+ZwlEWMj 3ZSsUdXXAgMBAAECggEAEnEUaw0475VpesUsSEM0pZy9J3fKIg/EHQjS3+RAru3G ch0I8aV3gPpFmiCL9uhnyCEKXpWz4gaoRyCTwqUtEa2sBOsFTRAd9Uodc/YoBgR6 Pn+zwQlj3H8sn8qnjZDi5wBx/ksGxNKgtjXD6ohQXm8F/hbBpd6HkJiJiBr1o1/a 4Kzh9L1OpYVS5QF0EN3idNkt911vfjA+bqBXXjAf9IHvirQ2GeCNzmHygxiRhAWA ki2fm0pGbKFUAfo+sgtDPT2jrA4rhSHG4mMr8IWBpr082aKNns7ujxT9ndBCl0Pp 7efPNCT4+zqfyVAB6x2rYhtXTqR7wsASMIfSLzyoIQKBgQDi2sb9z4OEl0mTV0Ey 1Lia4F06QhD7Kl1mhBWYPA1RO1ieAHHINFvwPJQLjHR2yMRMDmTOc3S9Hy3H3QMG XZlrIl5sgeFzsdqGyd2kscGFUGkH9RY2V/XB0mxQFIGI2PBztqd6e6BJQz4oSyMz cBZq/NH5u95QRlyI0I1u5b5lMQKBgQDbYZdhqHcDYmc61aHRNEhnxbK4ph1bdTiM QbIF0wUssXQKwEzvYzswRlI27rXeSHpJA8vc+XAoD/+Ut30I8Td3yUnnsHZctU2D b/8OTqwFqyrwXM+SvyWZejuvX6IVJuRwPMFG88L88lryEs0ntlQKC/x6wxtcs67X 6ZGsLSfJhwKBgQDAo09/kIv6OA4+lEXFSGZK/mOsaRXKcztFJry/vZ8BcAfchDwa 6nt4EbkV5XuwsuQeQcrQlbJ4NtXFdqRu72SsWU8djV1Jxanv89PHWzseXh4Sp8jo 9OC4aluX1RH6h14IpP6rP/fovrU1ujh2IaSnzXDxRNuQB2/krlSr62Q2wQKBgGNL jbgvBwcqH+06So6lKmyFx/nZfgoqSVj6VzhZpcrv2sUO+wOTF3QnMAkbDIg6p9aq eDhhUklfzF+kmVxVybRXEDNk5H3bteTa6Uexhhzet4WpjG4wRDVuZNtg3rzSKK1A Yn7Z0BSrIUzWA7OIzArsF+/8pULVNTsWxc93dL27AoGAT3eaPv07rhzyztxFYTsr dHcgNb+vwroN3Ic7IJnxoa2BjyqczaAG3vMrOcxFg2MLJ7fPmI1W4pPOJyxmUhO0 mZhk+F7h+dg7XB7h0lqR1usp3Ak3qyu1f4XZj4imzQWWyETpgE4uA9tBniPQIRK6 miXhZ2YoXfdsSZOatWojGLI= -----END PRIVATE KEY----- */ //https://www.oren.net.cn/rsa/info.html //在线转换为模数和指数 //PEM->模数+指数 char *publicKey_exponent = "10001"; char *privateKey_exponent = "1271146b0d38ef95697ac52c484334a59cbd2777ca220fc41d08d2dfe440aeedc6721d08f1a57780fa459a208bf6e867c8210a5e95b3e206a8472093c2a52d11adac04eb054d101df54a1d73f62806047a3e7fb3c10963dc7f2c9fcaa78d90e2e70071fe4b06c4d2a0b635c3ea88505e6f05fe16c1a5de87909889881af5a35fdae0ace1f4bd4ea58552e5017410dde274d92df75d6f7e303e6ea0575e301ff481ef8ab43619e08dce61f2831891840580922d9f9b4a466ca15401fa3eb20b433d3da3ac0e2b8521c6e2632bf08581a6bd3cd9a28d9eceee8f14fd9dd0429743e9ede7cf3424f8fb3a9fc95001eb1dab621b574ea47bc2c0123087d22f3ca821"; //hex array ,faster than string //直接使用16进制数据可略微提高速度,软件也支持传入字符串 // 具体看代码中 GetHex 和 Get static unsigned char ModulusHex[RSA_ENCODE_LEN] = { 0xC2, 0x67, 0xA3, 0x46, 0x1C, 0x3F, 0x48, 0x1D, 0xB1, 0x07, 0x7A, 0xE0, 0x25, 0x88, 0x60, 0x39, 0x60, 0x43, 0x5F, 0xF0, 0xE9, 0xA2, 0x70, 0xD5, 0x54, 0xFC, 0xD3, 0x5A, 0x19, 0xF7, 0x27, 0x82, 0x0D, 0xBF, 0xA8, 0xD4, 0x6B, 0xD1, 0xC3, 0x91, 0xE1, 0xE1, 0xCA, 0xCE, 0x0E, 0x39, 0x94, 0xCD, 0x6A, 0x3A, 0xFC, 0x91, 0x1C, 0xB8, 0x4C, 0x87, 0xA6, 0xA2, 0xD9, 0xC8, 0x60, 0xE3, 0x49, 0x9E, 0x85, 0xBB, 0x57, 0x22, 0x10, 0x10, 0x09, 0x04, 0xCB, 0x17, 0x0C, 0x7A, 0xDB, 0x79, 0x9A, 0xA4, 0x4F, 0x04, 0xBB, 0xB2, 0x73, 0xC1, 0x72, 0x82, 0x7E, 0x21, 0xA3, 0xFA, 0xDD, 0xF4, 0x92, 0x1D, 0xE3, 0xE3, 0xE0, 0x28, 0xB9, 0xAB, 0xE8, 0xD5, 0x5C, 0xB9, 0x90, 0xA9, 0x55, 0x73, 0xDE, 0x83, 0x2A, 0x8D, 0xC7, 0x49, 0xD1, 0xFD, 0x4A, 0x23, 0x21, 0x26, 0xEA, 0xFC, 0x1B, 0xBE, 0x36, 0x57, 0x12, 0xB6, 0x68, 0x9C, 0x65, 0x4B, 0x80, 0x79, 0x56, 0xE4, 0x18, 0x65, 0x0E, 0x96, 0xFB, 0x4C, 0xCC, 0x57, 0xA1, 0x90, 0x13, 0xF0, 0x13, 0x7D, 0x44, 0x76, 0x96, 0x14, 0xAB, 0xEF, 0xF3, 0x2E, 0xE2, 0x7C, 0x39, 0xAC, 0x42, 0xFB, 0x39, 0xB9, 0x3C, 0x5A, 0x36, 0x01, 0x92, 0x5F, 0x23, 0x91, 0xB3, 0xE6, 0x58, 0x1B, 0xD6, 0x0E, 0x6E, 0x77, 0x44, 0xC6, 0xD4, 0x95, 0x2B, 0x9B, 0xD0, 0xE5, 0xE7, 0xF2, 0x52, 0x35, 0x22, 0xF7, 0x49, 0x70, 0x44, 0x0B, 0xBE, 0xE6, 0x75, 0xF7, 0x74, 0x04, 0x0E, 0x55, 0x16, 0x5F, 0x25, 0x57, 0xB2, 0x1F, 0x4D, 0xF4, 0x93, 0x50, 0x4F, 0x48, 0x2A, 0x83, 0x1E, 0xBE, 0xA6, 0x71, 0xA1, 0xA1, 0xA9, 0xC8, 0xDF, 0x99, 0x70, 0x16, 0xF2, 0xE4, 0xD8, 0x2C, 0xA2, 0xA2, 0x49, 0xEA, 0xF9, 0x9C, 0x25, 0x11, 0x63, 0x23, 0xDD, 0x94, 0xAC, 0x51, 0xD5, 0xD7 }; unsigned char encode_str[RSA_ENCODE_LEN] = {0}; unsigned char decode_str[RSA_ENCODE_LEN] = {0}; int outlen = 0; unsigned char * base64_str = NULL; unsigned int base64_str_len = NULL; uint8_t* decode_base64 = NULL; char pub_source_string[] = "embedded-system > Public key to RSA encode,hehe"; char pri_source_string[] = "embedded-system > Private key to RSA encode,haha"; printf("RSA demo"); //--------------------------------------------------- memset(encode_str, 0, sizeof(encode_str)); memset(decode_str, 0, sizeof(decode_str)); //公钥加密 outlen = RSA2048_pub_PKCS1Padding_Encode(pub_source_string, strlen(pub_source_string), encode_str, publicKey_exponent, ModulusHex); //密文转base64方便显示,和在线工具对比结果 // https://the-x.cn/cryptography/Rsa.aspx //base64_str = base64_encode(encode_str, outlen, &base64_str_len); //printf("Public encode %d\r\n%s\r\n", base64_str_len, base64_str); //portable_free(base64_str); //私钥解密 RSA2048_pri_PKCS1Padding_Decode(encode_str, &outlen, decode_str, privateKey_exponent, ModulusHex); printf("Private decode %d\r\n%s\r\n", outlen, decode_str); //--------------------------------------------------- memset(encode_str, 0, sizeof(encode_str)); memset(decode_str, 0, sizeof(decode_str)); //私钥签名 outlen = RSA2048_pri_PKCS1Padding_Encode(pri_source_string, strlen(pri_source_string), encode_str, privateKey_exponent, ModulusHex); //公钥验签 RSA2048_pub_PKCS1Padding_Decode(encode_str, &outlen, decode_str, publicKey_exponent, ModulusHex); printf("Public decode %d\r\n%s\r\n", outlen, decode_str); //--------------------------------------------------- printf("RSA demo done"); return 0; }
5、应用
和AES一样,RSA也是块加密算法( block cipher algorithm),只针对固定长度明文,如RSA2048其加密的数据长度需要填充后是2048位即256字节,如果明文长度大于256字节则需要拆分。当然最简单的办法是应用层分配256字节缓存,有效数据以外以0x00填充。
RSA算法虽然安全,但其计算量非常大,效率较低,尤其在嵌入式系统中,硬件资源有限的情况下加密、解密时间以秒为单位。而对称加密算法AES算法效率高,但其在密钥协商时,在网络传输中有被拦截的风险,或者任一方保存不当导致密钥泄露,其密钥存在很大的安全隐患。
所以,考虑到安全性和高效性,一般采用多种算法组合加密的方式。使用RSA来加密AES的密钥,密钥协商后,使用AES来对后续数据进行加密。
精彩评论