在前不久的一场媒体活动中,ADI系统解决方案事业部总监赵轶苗(Morton)将ADI公司55年的历史概括为扮演“数字与模拟世界,或者是物理世界和数字世界的桥梁”,他用一个二维坐标图更硬核的解释为“就是建立在带宽和分辨率技术上的桥梁”。坐标图的横轴是分辨率,也就是把一个模拟信号转换成一个什么样精度的数字信号,可能是一个8比特或者16比特的信号;纵轴是带宽,它的信号速度可能是从10KHz到100KHz甚至更高。“最 早业界我们的起点在8比特这样的水平,慢的演进到了一些更高精度和更高速度的产品和技术,比如说我们最 早提出了12比特、100KHz左右的ADC,这就解决了运动控制里面的一些数字化的问题,它实现了数字化的运动控制;接下来实现了14比特的ADC,我们很多超声波、X光的技术就能使能起来,实现它的数字化。”Morton指出。
一座由带宽和分辨率构成的桥梁,ADI不停地拓展它的边界。
Morton分享了ADI在拓展这座“桥梁”中那些突破性的成果在电机驱动、电力计量、数字成像等领域带来的创新应用机会,而他一带而过的医疗成像应用,则在改善人类生存能力上更具非凡的意义。本文尝试结合该话题讨论一些主要的现代医疗成像系统,这些系统虽然运用完全不同的物理原理和处理技术,但都有一个共同点:采用模拟数据采集前端进行信号调理,并将原始成像数据转换到数字域。这个微小的前端功能模块虽然深藏于复杂机器内部,但其性能却会对整个系统的最 终图像质量产生至关重要的影响。它的信号链包括一个检测元件、一个低噪声放大器(LNA)、一个滤波器和一个模数转换器(ADC)。而在医疗成像领域的电子设计中,数据转换器的动态范围、分辨率、精度、线性度和噪声要求带来了最 关键的要求。
数字射线照相对模数转换器的性能要求
数字射线照相(DR)的物理原理与所有传统的吸收式射线照相系统相同。探测器将X射线光子转换为与入射粒子能量成正比的电荷。生成的电信号经放大并转换到数字域中,以产生X射线图像的精确数字表示。其图像质量取决于空间与强度维度中的信号采样。在空间维度中,最 小采样速率由探测器的像素矩阵大小和实时荧光透视成像的更新速率定义。具有数百万像素和典型更新速率高达25fps至30fps的平板探测器采用通道多路复用和多个ADC,采样速率高达数十MSPS,可在不牺牲精度的情况下满足最 短转换时间要求。
在强度维度中,ADC的数字输出信号代表在特定曝光时间内给定像素所吸收的X射线光子的积分量。该值被分组为由ADC的位深度定义的离散电平的有限数值。另一个重要参数是信噪比(SNR),它定义了系统忠实地表示成像人体的解剖学特征的内在能力。数字X射线系统采用14位至18位ADC,SNR水平范围为70dB至100dB,具体取决于成像系统的类型及其要求。有各种各样的离散ADC和集成模拟前端,可使各种类型的DR成像系统具有更高的动态范围、更精细的分辨率、更高的检测效率和更低的噪声。
数字X射线探测器信号链中ADC性能至关重要
24位以上高分辨模数转换器是为CT扫描仪必备件
计算机断层扫描(CT)同样采用电离辐射技术,其中CT探测器是整个系统架构的核心组件它由多个模块组成,如图所示。每个模块将入射的X射线转换为电信号,并路由到多通道模拟数据采集系统(ADAS)。ADAS必须具有极低的噪声性能,以保持良好的空间分辨率,降低X射线剂量,并具有极低的电流输出以实现高动态范围性能。为了避免图像伪影并确保良好的对比度,转换器前端必须具有出色的线性度性能并可提供低功耗工作模式,以降低热敏型探测器的冷却要求。
其中的ADC必须具有至少24位的高分辨率才能获得更优质、更清晰的图像,同时还要具有快速采样速率(短至100μs),以便数字化探测器读数。ADC采样速率还必须支持多路复用,这样就可以使用较少数量的转换器,并且减小整个系统的尺寸和功耗
CT探测器信号链ADC必须具有至少24位的高分辨率才能获得更优质、更清晰的图像。
正电子发射断层扫描
正电子发射断层扫描(PET)涉及由引入人体的放射性核素产生的电离辐射。它发射的正电子与组织中的电子碰撞,产生辐射方向大体相反的伽马射线对。PET探测器由一系列闪烁晶体和光电倍增管(PMT)组成,它们将伽马射线转换为电流,继而转换为电压,然后通过可变增益放大器(VGA)放大并补偿幅度变化。然后将产生的信号在ADC和比较器路径之间分离,以提供能量和时序信息,供PET重合处理器用于重建体内放射性示踪剂浓度的3D图像。
PET电子前端信号链。
如果两个光子的能量约为511keV,并且其探测时间相差不到十亿分之一秒,则它们可被归类为相关光子。光子的能量和探测时间差对ADC提出了严格的要求,ADC必须具有10至12位的高分辨率,并且快速采样速率通常需高于40MSPS。低噪声性能可最 大程度地扩大动态范围,而低功耗工作模式则可减少散热,这两点对于PET成像也很重要。
磁共振成像
磁共振成像(MRI)是一种无创医疗成像技术,它依赖于核磁共振现象,并且无需使用电离辐射,这使之有别于DR、CT和PET系统。MR信号的载波频率直接与主磁场强度成比例,其商用扫描仪频率范围为12.8MHz至298.2MHz。信号带宽由频率编码方向的视场定义,变化范围从几kHz到几十kHz。
MRI超外差式接收器信号链。
这对接收器前端提出了特殊的要求,该前端通常基于具有较低速率SARADC的超外差式架构。然而,模数转换的最 新进展使快速低功耗多通道流水线ADC能够在最 常见的频率范围内以16位深度、超过100MSPS的转换速率对MR信号直接进行数字转换。其动态范围要求非常严苛,通常超过100dB。通过对MR信号过采样可以提高分辨率、增加SNR,并消除频率编码方向的混叠伪像,从而增强图像质量。为获得快速扫描采集时间,可应用基于欠采样的压缩检测技术。
超声波扫描术
超声波扫描术或医学超声的物理原理与本文中讨论的所有其他成像模式不同。它使用频率范围为1MHz至18MHz的声波脉冲。这些声波扫描人体内部组织并以不同强度的回波进行反射。实时获取这些回波,并显示为超声波扫描图,其中可能包含不同类型信息,如声阻抗、血流量、组织随时间的活动状态或其僵硬程度。
医疗超声前端的关键功能模块由集成的多通道模拟前端表示,它包括低噪声放大器、可变增益放大器、抗混叠滤波器、ADC和解调器。对AFE最 重要的要求之一是动态范围。根据成像模式,该要求可能需要达到70dB至160dB,以便区分血液信号与探头和身体组织运动所产生的背景噪声。因此,ADC必须具有高分辨率、高采样速率和低总谐波失真(THD),以保持超声信号的动态保真度。超声前端的高通道密度还要求必须具有低功耗特性。面向医疗超声设备提供的一系列集成式AFE可实现最 佳图像质量,并降低功耗、系统尺寸和成本。
医疗超声波系统前端信号链示意图。
结论
本文尝试以医疗成像应用给大家一个基本的概念,构建从数字到模拟的技术发展桥梁如何实现医疗成像应用的性能突破。不断拓展模数转换器的技术性能边界,通过创新、努力,使得很多的应用和技术能够找到一个关键支撑,拓展模拟和数字之间互相转换和互相变化的能力。医疗成像对电子设计提出了极为严苛的要求。以低成本和紧凑的封装提供低功耗、低噪声、高动态范围和高分辨率性能,是现代医疗成像系统要求所决定的发展趋势。
为此,ADI专为DR应用设计了带256通道的高度集成的模拟前端ADAS1256,具有出色线性度的多通道数据采集系统ADAS1135和ADAS1134可最 大限度地提高CT应用的图像质量,多通道ADCAD9228、AD9637、AD9219和AD9212经过优化后具有出色的动态性能和低功耗,可满足PET要求。流水线ADCAD9656为MRI提供出色的动态性能和低功耗特性,集成式接收器前端AD9671专为要求小尺寸封装的低成本、低功耗的医疗超声应用而设计。
精彩评论