今天我们说说,台积电昔日的竞争对手--联电。联电创立于1980年也是台湾第一家上市的半导体公司,早年一直是晶圆代工领域的领导者。
什么原因导致联电与台积电曾并称晶圆双雄,到如今无论股价、营收与获利都拼不过台积电在晶圆代工的地位呢?这就要说说台积电董事长张忠谋与联电荣誉董事长曹兴诚二王相争的故事了。
张忠谋于1949年赴美留学,分别拿到美国麻省理工学院机械工程系学士、硕士,因为申请博士失败,毕业后只好先进入德州仪器(TI)工作,当时的张忠谋27岁。
彼时德仪正替IBM生产四个电晶体,IBM提供设计、德仪代工,可以说是晶圆代工的雏形。张忠谋带领几个工程师,成功把德仪的良率从2%-3%成功提升至20%以上、甚至超过IBM的自有产线。
张忠谋在德仪待了25年,直到1983年确定不再有升迁机会,1985年应经济部长孙运璿之邀、回台担任工研院院长,当时的张忠谋已经54岁了。
相较于张忠谋的洋学历与外商经历,曹兴诚由台大电机系学士、交大管科所硕士毕业后进入工研院。工研院于1980年出资成立联电后,于1981年起转任联电副总经理、隔年转任总经理。
让我们再看一次──联电是创立于1980年,曹兴诚1981年任副总经理、张忠谋于1985年以工研院院长身分兼任联电董事长。
1986年、张忠谋创办了台积电,并身兼工研院、联电与台积电董事长三重身分。相较于以整合元件设计(IDM)为主、开发自家处理器与记忆体产品的联电,台积电专攻晶圆代工。
这在当时完全是一个创举、更没人看好,一般认为IC设计公司不可能将晶片交由外人生产、有机密外泄之虞,况且晶圆代工所创造的附加价值比起贩售晶片还低得多。
然而建立晶圆厂的资本支出非常昂贵,若将晶片的设计和制造分开,使得IC设计公司能将精力和成本集中在电路设计和销售上,而专门从事晶圆代工的公司则可以同时为多家IC设计公司提供服务,尽可能提高其生产线的利用率、并将资本与营运投注在昂贵的晶圆厂。
台积电的成功,也促使无厂半导体(Fabless)的兴起。
不过这完全惹恼了曹兴诚,他宣称在张忠谋回台的前一年便已向张提出晶圆代工的想法,却未获回应,结果张忠谋在担任联电董事长的情况下,隔年竟手拿政府资源、拉上用自己私人关系谈来的荷商飞利浦(Philips)合资另创一家晶圆代工公司去了。
当时曹兴诚示威性地选在工研院与飞利浦签约的前夕召开记者会、宣布联电将扩建新厂以和台积电抗衡。
从那之后,曹兴诚和张忠谋互斗的局面便无停止过,然而张忠谋亦始终担任联电董事长,直到1991年曹兴诚才成功联合其他董事以竞业迴避为由,逼张忠谋辞去、并从总经理爬到董事长一职。
台积电随后在晶圆代工上的成功,也成了联电的借鉴。1995年联电放弃经营自有品牌,转型为纯专业晶圆代工厂。
曹兴诚的想法比张忠谋更为刁钻──他想,若能与无厂IC设计公司合资开设晶圆代工厂,一来不愁没有资金盖造价昂贵的晶圆厂,二来了掌握客户稳定的需求、能直接承接这几家IC设计公司的单。
故曹兴诚发展出所谓的「联电模式」,与美国、加拿大等地的11家IC设计公司合资成立联诚、联瑞、联嘉晶圆代工公司。
然而此举伴随而来的技术外流风险,大型IC设计厂开始不愿意将晶片设计图给予联电代工,使得联电的客户群以大量的中小型IC设计厂为主。
1996年,因为受到客户质疑在晶圆代工厂内设立IC设计部门,会有怀疑盗用客户设计的疑虑,联电又将旗下的IC设计部门分出去成立公司,包括现在的联发科技、联咏科技、联阳半导体、智原科技等公司。
再来是设备未统一化的问题──和不同公司合资的工厂设备必有些许差异,当一家工厂订单爆量时,却也难以转单到其他工厂、浪费多余产能。
相较之下,台积电用自己的资金自行建造工厂,不但让国际大厂愿意将先进制程交由台积电代工而不用担心其商业机密被盗取、更能充分发挥产线产能。
不过真正让曹兴诚砸掉整个宏图霸业、从此联电再也追赶不上台积电的分水岭,还在于1997年的一场大火,与2000年联电与IBM的合作失败。
我们在前述中提到,联电的每个晶圆厂都是独立的公司,「联瑞」就是当时联电的另一个新的八吋厂。在建厂完后的两年多后,1997年的八月开始试产,第二个月产就衝到了三万多片。
该年10月,联电总经理方以充满企图心的口吻表示:「联电在两年内一定干掉台积电!」
不料两日后,一把人为疏失的大火烧掉了联瑞厂房。
火灾不仅毁掉了百亿厂房,也让联瑞原本可以为联电赚到的二十亿元营收泡汤,更错失半导体景气高峰期、订单与客户大幅流失,是历史上台湾企业火灾损失最严重的一次,也重创了产险业者、赔了100多亿,才让科技厂房与产险业者兴起风险控制与预防的意识,此为后话不提。
在求新求快的半导体产业,只要晚别人一步将技术研发出来、就是晚一步量产将价格压低,可以说时间就是竞争力。在联瑞被烧掉的那时刻,几乎了确定联电再也无法追上台积电。
2000年与IBM的合作,对联电来说又是一次重击,却是台积电翻身的关键
随著半导体元件越来越小、导线层数急遽增加,使金属连线线宽缩小,导体连线系统中的电阻及电容所造成的电阻/电容时间延迟(RCTimeDelay),严重的影响了整体电路的操作速度。
要解决这个问题有二种方法──一是采用低电阻的铜当导线材料;从前的半导体制程采用铝,铜的电阻比铝还低三倍。二是选用Low-KDielectric(低介电质绝缘)作为介电层之材料。在制程上,电容与电阻决定了技术。
当时的IBM发表了铜制程与Low-K材料的0.13微米新技术,找上台积电和联电兜售。
该时台湾半导体还没有用铜制程的经验,台积电回去考量后,决定回绝IBM、自行研发铜制程技术;联电则选择向IBM买下技术合作开发。
然而IBM的技术强项只限于实验室,在制造上良率过低、达不到量产。
到了2003年,台积电0.13微米自主制程技术惊艳亮相,客户订单营业额将近55亿元,联电则约为15亿元。再一次,两者先进制程差异拉大,台积电一路跃升为晶圆代工的霸主,一家独秀。
NVIDIA执行长兼总裁黄仁勋说:「0.13微米改造了台积电。」
现在的联电在最高端制程并未领先,策略上专注于12吋晶圆的40以下纳米、尤其28纳米,和8吋成熟制程。除了电脑和手机外,如通讯和车用电子晶片,几乎都采用成熟制程以控制良率、及提供完善的IC给予客户。
联电积极利用策略性投资布局多样晶片应用,例如网路通讯、影像显示、PC等领域,针对较小型IC设计业者提供多元化的解决方案,可是说是做到台积电不想做的利基市场。
台积电的28纳米制程早在2011年第4季即导入量产。反观联电28纳米制程迟至2014年第2季才量产,足足落后台积电长达2年半时间。
在28纳米的基础上联电仍得和台积电竞争客户,故在28纳米需求疲软时台积电仍能受惠于先进制程、而联电将面临不景气的困境。
近来竞争趋烈,中芯也已在2015年下半量产28纳米,故联电计画跳过20纳米,原因在于20纳米制程在半导体上有其物理侷限,可说是下一个节点的过渡制程,效果在于降低功耗,效能上突破不大,因此下一个决胜节点会是16/14纳米制程。
联电在2017年上半年开始商用生产14纳米FinFET晶片,以赶上台积电与三星,然而在随著制程越趋先进,所需投入的资本及研发难度越大,联电无法累积足够的自有资本,形成研发的正向循环,未来将以共同技术开发、授权及策略联盟的方式来弥补技术上的缺口。
精彩评论